Spécifications
Avant d'aborder les spécifications des différentes cartes lancées, un mot rapide sur les GPU et procédés de fabrication associés. Commençons par le cas le plus simple, à savoir Intel qui se contente pour l'heure de 2 GPU : l'ACM-G10 pour les solutions moyen / haut de gamme (ARC A770/750 et futures A5xx) et l'ACM-G11 pour l'entrée de gamme (ARC A3xx). Intel est un fondeur, mais plutôt que de faire appel à ses propres capacités de production, il sous-traite la gravure de ces 2 puces à TSMC via son procédé de fabrication N6, une optimisation du nœud 7 nm. Clairement dépassé en termes de densité ou de performance par le 5 nm du géant taïwanais des semiconducteurs, ce procédé de fabrication à l'avantage d'être bien moins cher. ACM-G10 est une puce plutôt conséquente, avec un peu plus de 400 mm² de surface et pas moins de 21,7 milliards de transistors. Son petit frère se contente de 157 mm² et 7 milliards de transistors.
Nvidia de son côté a fait un choix totalement différent, en basculant l'intégralité de sa gamme sur le N4 de TSMC, une déclinaison "personnalisée" du très performant 5 nm. Pas moins de 5 GPU différents ont été conçus, allant d'AD102 intégrant plus de 76 milliards de transistors sur une superficie de 608 mm² et animant la RTX 4090, au petit AD107 se contentant de 159 mm² pour presque 19 milliards et affecté cette fois à la RTX 4060. Entre ces 2 extrêmes se trouvent les puces AD103 (RTX 4080), AD104 (RTX 4070 Ti / RTX 4070) et AD106 (RTX 4060 Ti) par ordre décroissant de superficie et complexité. Ces 5 références monopolisent le haut du classement en matière de densité de transistors par mm², multipliant pratiquement par trois cette valeur en comparaison du précédent N8 de Samsung, du fait de la différence conséquente entre ces 2 nœuds de gravure, et ce contrairement à ce que laisseraient penser leurs nomenclatures commerciales respectives. Le N8 est en fait une optimisation du Node 10nm, Nvidia "enjambant" donc le 7 nm pour passer directement au 5 nm.
AMD a lui opté pour un "en même temps" que ne renierait pas un homme politique français, ayant été élu à deux reprises à la magistrature suprême. Le N5 de TSMC est donc dévolu aux GCD, alors que les MCD doivent de leur côté se contenter du N6, tout comme Navi 33. Ce dernier purement monolithique mesure 204 mm² pour 13,3 milliards de transistors et se charge d'animer la RX 7600. À l'autre bout de la gamme, les 6 MCD plus le GCD d'un Navi 31 complet occupent une superficie totale de presque 530 mm² pour 57,7 milliards de transistors. La densité est donc légèrement moindre que sur les puces intégralement en 4N du caméléon, mais finalement pas si éloignée malgré le mix des nœuds de gravure. Cela tendrait à corroborer l'assertion d'AMD quant aux faibles gains (en densité au moins) à attendre d'une gravure plus fine pour certains éléments constitutifs d'un GPU. Et Navi 32 alors ? Il couple un GCD de 200 mm² gravé en 5 nm à 4 MCD gravés en 6 nm par TSMC. La partie logique étant fortement réduite sur le nouveau GCD, la densité va finalement se positionner entre celle de Navi 33 et Navi 31.
GPU |
Process |
Nombre de transistors | Superficie die | Densité (Millions de transistors par mm²) |
---|---|---|---|---|
AD102 | 4N TSMC | 76,3 milliards | 608,5 mm² | 125,4 |
AD106 | 4N TSMC | 22,9 milliards | 187,8 mm² | 121,9 |
AD104 | 4N TSMC | 35,8 milliards | 294,5 mm² | 121,6 |
AD103 | 4N TSMC | 45,9 milliards | 378,6 mm² | 121,2 |
AD107 | 4N TSMC | 18,9 milliards | 158,7 mm² | 119,1 |
Navi 31 | N5 + N6 TSMC | 57,7 milliards | 529,5 mm² | 109 |
Navi 32 | N5 + N6 TSMC | 28,1 milliards | 350 mm² | 80,3 |
GA100 | 7N TSMC | 54.2 milliards | 826 mm² | 65,6 |
Navi 33 | N6 TSMC | 13,3 milliards | 204 mm² | 65,2 |
ACM-G10 | N6 TSMC | 21,7 milliards | 406 mm² | 53,4 |
Navi 21 | N7P TSMC | 26,8 milliards | 520 mm² | 51,6 |
Navi 22 | N7P TSMC | 17,2 milliards | 335 mm² | 51,3 |
Navi 24 | N6 TSMC | 5,4 milliards | 107 mm² | 50,5 |
Navi 23 | N7P TSMC | 11,1 milliards | 237 mm² | 46,8 |
ACM-G11 | N6 TSMC | 7,2 milliards | 157 mm² | 45,9 |
GA102 | 8N Samsung | 28,3 milliards | 628,4 mm² | 45 |
GA104 | 8N Samsung | 17,4 milliards | 392 mm² | 44,4 |
GA106 | 8N Samsung | 12 milliards | 276 mm² | 43,5 |
Navi 10 | N7P TSMC | 10,3 milliards | 251 mm² | 41 |
Vega 20 | N7FF TSMC | 13.2 milliards | 331 mm² | 39,9 |
GP102 | 16FFC TSMC | 12 milliards | 471 mm² | 25,5 |
Vega 10 | 14LPP GF | 12.5 milliards | 495 mm² | 25,3 |
GP100 | 16FFC TSMC | 15,3 milliards | 610 mm² | 25,1 |
TU104 | 12FFC TSMC | 13,6 milliards | 545 mm² | 25 |
TU102 | 12FFC TSMC | 18,6 milliards | 754 mm² | 24,7 |
TU106 | 12FFC TSMC | 10,8 milliards | 445 mm² | 24,3 |
Détaillons à présent les caractéristiques des cartes employant ces GPU en comparaison d’un certain nombre de cartes des segments performance, haut de gamme, et enthusiast, des générations précédentes.
Cartes | GPU | Fréq. Boost GPU (MHz) | Fréq. Mémoire (MHz) |
SP |
ALU FP32 | TMU | ROP | VRAM (Go) | Bus mem. (bits) | Calcul SP (Tflops) | Bande Passante mémoire (Go/s) | TGP (W) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RX Vega56 | Vega 10 | 1 471 | 800 | 3 584 | 3 584 | 224 | 64 | 8 | 2 048 | 10,5 | 410 | 210 |
RX Vega64 | Vega 10 | 1 546 | 946 | 4 096 | 4 096 | 256 | 64 | 8 | 2 048 | 12,7 | 484 | 295 |
Radeon VII | Vega 20 | 1 750 | 1 000 | 3 840 | 3 840 | 340 | 64 | 16 | 4 096 | 13,4 | 1 024 | 300 |
RX 5700 | Navi 10 | 1 725 | 1 750 | 2 304 | 2 304 | 144 | 64 | 8 | 256 | 7,9 | 448 | 180 |
RX 5700 XT | Navi 10 | 1 905 | 1 750 | 2 560 | 2 560 | 160 | 64 | 8 | 256 | 9,8 | 448 | 225 |
RX 6700 | Navi 22 | 2 174 | 1 988 | 2 304 | 2 304 | 144 | 64 | 10 | 160 | 10 | 318 | 175 |
RX 6700 XT | Navi 22 | 2 424 | 1 988 | 2 560 | 2 560 | 160 | 64 | 12 | 192 | 12,4 | 382 | 230 |
RX 6750 XT | Navi 22 | 2 495 | 2 238 | 2 560 | 2 560 | 160 | 64 | 12 | 192 | 12,8 | 430 | 250 |
RX 6800 | Navi 21 | 1 815 | 1 988 | 3 840 | 3 840 | 240 | 96 | 16 | 256 | 13,9 | 509 | 250 |
RX 6800 XT | Navi 21 | 2 015 | 1 988 | 4 608 | 4 608 | 288 | 128 | 16 | 256 | 18,6 | 509 | 300 |
RX 6900 XT | Navi 21 | 2 015 | 1 988 | 5 120 | 5 120 | 320 | 128 | 16 | 256 | 20,6 | 509 | 300 |
RX 6950 XT | Navi 21 | 2 100 | 2 238 | 5 120 | 5 120 | 320 | 128 | 16 | 256 | 21,5 | 573 | 335 |
RX 7700 XT | Navi 32 | 2 544 | 2 238 | 3 456 | 6 912 | 216 | 96 | 12 | 192 | 35,2 | 430 | 245 |
RX 7800 XT | Navi 32 | 2 430 | 2 425 | 3 840 | 7 680 | 240 | 96 | 16 | 256 | 37,3 | 621 | 263 |
RX 7900 XT | Navi 31 | 2 400 | 2 487 | 5 376 | 10 752 | 336 | 192 | 20 | 320 | 51,6 | 796 | 315 |
RX 7900 XTX | Navi 31 | 2 500 | 2 487 | 6 144 | 12 288 | 384 | 192 | 24 | 384 | 61,4 | 955 | 355 |
ARC A750 | ACM-G10 | 2 400 | 2 000 | 3 584 | 3 584 | 224 | 112 | 8 | 256 | 17,2 | 512 | 225 |
ARC A770 | ACM-G10 | 2 400 | 2 000 / 2 188 | 4 096 | 4 096 | 256 | 128 | 8 / 16 | 256 | 19,7 | 512 / 560 | 225 |
GTX 1070 | GP104 | 1 683 | 2 002 | 1 920 | 1 920 | 120 | 64 | 8 | 256 | 6,5 | 256 | 150 |
GTX 1070 Ti | GP104 | 1 683 | 2 002 | 2 432 | 2 432 | 152 | 64 | 8 | 256 | 8,2 | 256 | 180 |
GTX 1080 | GP104 | 1 733 | 1 251 | 2 560 | 2 560 | 160 | 64 | 8 | 256 | 8,9 | 320 | 180 |
GTX 1080 Ti | GP102 | 1 582 | 1 376 | 3 584 | 3 584 | 224 | 88 | 11 | 352 | 11,3 | 484 | 250 |
RTX 2070 | TU106 | 1 620 | 1 750 | 2 304 | 2 304 | 144 | 64 | 8 | 256 | 7,5 | 448 | 175 |
RTX 2070 SUPER | TU104 | 1 770 | 1 750 | 2 560 | 2 560 | 160 | 64 | 8 | 256 | 9,1 | 448 | 215 |
RTX 2080 | TU104 | 1 710 | 1 750 | 2 944 | 2 944 | 184 | 64 | 8 | 256 | 10,1 | 448 | 215 |
RTX 2080 SUPER | TU104 | 1 815 | 1 938 | 3 072 | 3 072 | 192 | 64 | 8 | 256 | 11,2 | 496 | 250 |
RTX 2080 Ti | TU102 | 1 545 | 1 750 | 4 352 | 4 352 | 272 | 88 | 11 | 352 | 13,5 | 616 | 250 |
RTX 3070 | GA104 | 1 725 | 1 750 | 2 944 | 5 888 | 184 | 96 | 8 | 256 | 20,3 | 448 | 220 |
RTX 3070 Ti | GA104 | 1 770 | 1 188 | 3 077 | 6 144 | 192 | 96 | 8 | 256 | 21,7 | 608 | 290 |
RTX 3080 | GA102 | 1 710 | 1 188 | 4 352 | 8 704 | 272 | 96 | 10 | 320 | 29,8 | 760 | 320 |
RTX 3080 12 Go | GA102 | 1 710 | 1 188 | 4 480 | 8 960 | 280 | 96 | 12 | 384 | 30,6 | 912 | 350 |
RTX 3080 Ti | GA102 | 1 665 | 1 188 | 5 120 | 10 240 | 320 | 112 | 12 | 384 | 34,1 | 912 | 350 |
RTX 3090 | GA102 | 1 695 | 1 219 | 5 248 | 10 496 | 328 | 112 | 24 | 384 | 35,6 | 936 | 350 |
RTX 3090 Ti | GA102 | 1 860 | 1 313 | 5 376 | 10 752 | 336 | 112 | 24 | 384 | 40 | 1 008 | 450 |
RTX 4060 Ti | AD106 | 2 535 | 2 250 | 2 176 | 4 352 | 136 | 48 | 8 / 16 | 128 | 22,1 | 288 | 160 / 165 |
RTX 4070 | AD104 | 2 475 | 1 313 | 2 944 | 5 888 | 184 | 64 | 12 | 192 | 29,1 | 504 | 200 |
RTX 4070 Ti | AD104 | 2 610 | 1 313 | 3 840 | 7 680 | 240 | 80 | 12 | 192 | 40,1 | 504 | 285 |
RTX 4080 | AD103 | 2 505 | 1 400 | 4 864 | 9 728 | 304 | 112 | 16 | 256 | 48,7 | 717 | 320 |
RTX 4090 | AD102 | 2 520 | 1 313 | 8 192 | 16 384 | 512 | 176 | 24 | 384 | 82,6 | 1 008 | 450 |
Rappelons qu'il est très difficile d'inférer les performances pratiques d'une carte graphique sur la seule base des valeurs brutes annoncées. Plusieurs raisons à cela, dont les fréquences réellement appliquées (qui diffèrent plus ou moins largement de celles officielles), mais aussi les subtilités architecturales quant aux conditions d'exécution de certaines unités ou l'impact par exemple des larges caches sur la bande passante effective. Ainsi, les 7800 XT / 7700 XT ont un avantage sensible en puissance de calcul brut vis-à-vis du haut de gamme de la génération précédente, mais ce n'est valable que lors de l'exécution du dual issue pour extraire deux FP32 au sein d'un même Wavefront. En pratique dans le domaine ludique, il est difficile de tirer plus de 20 à 30 % par ce biais. Ces indispensables précisions apportées, on notera que les deux séries 7000 sont très proches d'un point de vue calcul, elles seront principalement différenciées par la bande passante mémoire. Elles semblent également avoir l'ascendant sur le papier face à la RTX 4070, voyons donc ce qu'il en est lors de quelques tests synthétiques.
Tests synthétiques
Nous utilisons la suite de tests Geeks 3D pour estimer les performances synthétiques de la nouvelle venue, lors de l’exécution de certaines tâches particulières. Ainsi, PixMark Julia FP32 permet de mesurer la puissance de calcul brute en simple précision (FP32) et le fillrate qui en découle. Il dépend donc à la fois des unités de calcul et des ROP. Le test GiMark, s’attache de son côté à évaluer les performances de nos cartes au niveau de la géométrie. Enfin, TessMark permet de son côté de mesurer les capacités en tessellation des différentes cartes. Ces tests étant relativement brefs et spécifiques (n’utilisant donc qu’une partie des ressources totales des GPU), ils permettent aux modèles limités par leur température et/ou puissance électrique maximale autorisée de conserver des fréquences plus élevées que lors d’une session de jeu par exemple.
En matière de puissance de calcul brute sur ce test, la RTX 4070 prend un avantage de 12 % sur RX 7800 XT. Plus bas dans la gamme, la RX 7700 XT devance cette fois de 5 % la RTX 4060 Ti 16G, elle-même 3 % derrière le modèle 8 Go, comme le laissait supposer les fréquences respectives relevées pour ces deux modèles. Ce test étant réalisé sous OpenGL, les performances des différentes cartes dépendent également de la qualité des pilotes pour cette API vieillissante, ce qui n'est pas à négliger. Pour la géométrie, le résultat des RX 7000 tend à confirmer notre hypothèse concernant la présence de 2 Shader Engine uniquement au sein de Navi 32. Enfin, l'écart est moindre dans le test de tessellation entre 7900 et 7800, avec un avantage notable des GeForce dans ce domaine.
Tests synthétiques - RX 7700 XT / RX 7800 XT / RTX 4060 Ti 16 Go
Passons à présent à des tests synthétiques issus de 3DMark, en s’attachant à vérifier les capacités des cartes graphiques sur divers points. DXR, au nom explicite, sollicite de manière intensive les capacités d’accélération du Ray Tracing, GPU au travers de l’API de Microsoft. Si RDNA 3 dispose d'unités plus performantes que RDNA 2, la quantité de ces dernières entre bien évidemment aussi en compte. C'est pourquoi les RX 7700 XT / 7800 XT disposant de respectivement 54 / 60 Ray Accelerators, n'arrivent pas à devancer les RX 6800 XT / 6900 XT, qui sont dotées de 72 & 80 unités de ce type. Ce n'est pas différent avec Ada et ce malgré la supériorité évidente des RT Core face à leurs pendants rouges, la RTX 4060 Ti n'en embarquant que 34. C'est tout de même suffisant pour prendre un avantage de 17 % sur la RX 7800 XT en RT brut, même si en jeu ce sera un usage hybride bien moins lourd dans ce domaine qui prévaudra.
Mesh Shader évalue la capacité de traitement de ces derniers par les GPU modernes. Le test permet de comparer les performances avec et sans Mesh Shaders actifs, mais cette représentation ne permet pas une comparaison pertinente entre cartes. Nous affichons donc les performances de chaque référence avec Mesh Shaders actifs. À nouveau les GeForce devancent les Radeon de même gamme sur ce test. Le test PCIe mesure le débit de l’interface éponyme et confirme ici l’usage de 16 lignes PCIe 4.0 pour tous Navi 32 alors qu'AD106 se contente de la moitié. On notera que les cartes d’AMD disposent systématiquement d’un petit avantage à ce niveau à nombre de lignes équivalent. Le test Sampler Feedback, mesure de son côté l’impact de cette fonctionnalité introduite par les cartes Turing, via le Texture Space Shading. La RX 7800 XT talonne cette fois la RTX 4070, quant à la RX 7700 XT, elle croque la RTX 4060 Ti. Enfin le test VRS, abréviation de Variable Rate Shading, permet de mesurer le gain apporté par cette fonctionnalité lorsqu’elle est activée. Là aussi, le test affichant une comparaison entre 2 passes, nous préférons reporter ici le score atteint par chaque carte une fois la fonctionnalité activée, permettant ainsi une comparaison brute entre elles. Pas de changement de hiérarchie notable par rapport au test précédent.
Tests fonctionnalités - RX 7700 XT / RX 7800 XT / RTX 4060 Ti 16 Go
Voilà pour les spécifications des différentes cartes et leurs performances synthétiques, passons page suivante à l'analyse de leurs fréquences en jeu.
comment est-ce possible, 0 com sur un dossier du midrange des deux constructeurs ? 😌
En effet. Un merci semble de rigueur dans la mesure où j'ai lu les parties qui me parlaient le plus dans ce dossier très complet. Toutefois, j'avoue que l'envolée des prix m'a un peu éloigné de toutes ces sorties, que ce soit GPU ou CPU, et des jeux récents. Par ailleurs je compte garder ma carte longtemps n'ayant pas envie de balancer 500 euros pour du moyen de gamme tous les deux ans. Ça serait du 300-400 euros comme fût un temps, les nouveautés seraient plus sexy et se tenir à la page plus utile. Il y a 15 ans, 500 euros c'était mon top dépense CPU+GPU (voire carte mère quand les plus chères n'étaient qu'à 100-150 euros).
Mais il ne faut pas se tromper, ce genre de dossier sera consulté longtemps après sa parution, notamment lorsque les soldes (s'il y a) rendront ces cartes plus intéressantes, pour se rafraîchir la mémoire et les comparer avec le reste du matos à la mode.
Bon fiouu, j'ai fini de lire, merci pour le test Eric comme d'hab', complet comme c'est pas permis!
Sinon la rx7800xt est vraiment sympa (perf' en rasté'), par contre (et ça n'engage que moi), je la trouve un peu chère...
Les 2 se défendent bien dans l'absolu, chacun y trouvera son compte (pour remplacer pascal/Turing Navi10).